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Abstract. An arbitrary but known random matrix ensemble is subjected to a perturbation 
by any of the three classical random matrix ensembles (GOE, C U E  and <;SE). Using a 
B B G K Y  hierarchy for the correlation functions of the eigenvalues, we propose a self- 
consistent perturbation expansion and give the result for the two-point function to lowest 
order in integral form. By way of illustration, the integral is solved for the special case of 
a Poisson ensemble perturbed by any of the classical ensembles, thereby recovering a result 
previously derived by other methods. 

1. Introduction 

In recent years, random matrix theory has found a wide range of applications including 
nuclear, atomic, molecular and solid state physics, as well as quantum mechanical 
aspects of chaos. The classical ensembles [l], characterised in the framework of the 
theory of many complex variables by Cartan, were introduced in physics by Dyson 
and Mehta [2]. They are known as the Gaussian orthogonal, unitary and symplectic 
ensembles. Their spectral distributions are well understood. In addition to these, 
matrix ensembles with random eigenvalues, known as Poisson ensembles, are often 
used. 

With time, an increasing need has arisen to study transitions from one of these 
ensembles to another, as well as perturbations of arbitrary spectra by these ensembles, 
as systems in transitional states became available in experiments or through numerical 
analysis. Several methods are available for such studies; among them the Grassmann 
variable techniques are very powerful, and results concerning these questions are 
becoming available [3,4]. Yet these techniques are cumbersome and one is tempted 
to use perturbation theory, at least for small deviations. Unfortunately, the two-point 
function obtained by standard perturbation theory is singular at small distances, because 
for near-degenerate levels, any perturbation has a strong effect. By mapping the 
problem on a dynamical model similar to the Brownian motion model used by Dyson 
[5], we were able to use a self-consistency argument and obtain a two-point correlation 
function correct for all distances. 

In section 2, we develop the model. In section 3, we derive an exact relationship 
between the correlation functions, well known in statistical mechanics as the B B G K Y  

hierarchy [6]. We develop an approximation scheme for this hierarchy which holds 
for small times, i.e. in the original problem, for small perturbations. This self-consistent 
approximation is then solved exactly, which leads to a general solution of the problem. 
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In section 4, we apply the result of the preceding section to the perturbation of a 
Poisson spectrum by a classical ensemble-the so-called Porter-Rosenzweig model 
[7]-recovering in this case the results obtained by Tomsovic [8] and French er a1 [9] 
using a different method. This serves as a test of the method and an illustration of its 
application. 

2. Description of the model 

We consider the following problem. Given an ensemble of Hamiltonians with known 
properties, what are the properties of the ensemble of Hamiltonians obtained by adding 
a small random perturbation? More precisely, what are the properties of the Hamil- 
toni an : 

H‘”‘= Ho+ v‘”’ (2.1) 

if Ho belongs to a known ensemble and the ut;) are independent random variables 
with Gaussian distribution such that: 

(uj;’)=o (( u : ) ) ~ )  = A ( i  # j )  ( ( u : : ~ ) ~ ) =  CA (2.2) 

where C = 2/p ,  depending on whether the perturbation V(” belongs to the orthogonal, 
unitary or symplectic ensembles ( p  is 1, 2 or 4 respectively). For a definition of these 
ensembles and their various properties, see, e.g. [2]. To make the normalisation 
somewhat more precise, we shall in the following always suppose that the eigenvalues 
of Ho have a spacing of the order of one. The number N of these eigenvalues will 
always be assumed to be large and the value of A to be small compared to 1, but 
independent of N. From these assumptions, it immediately follows that the spectrum 
of Ho covers a range of the order of N, whereas that of V‘A)  covers a range of the 
order of A n ,  using standard results on the eigenvalue distribution of GOE matrices. 

Because of the statistical properties of the V‘”, it is possible to build up H ( A )  by 
successive addition of infinitesimal perturbations. This is a limiting form of the 
following decomposition: 

(2.3) 

Thus we can use second-order perturbation theory at each step, eventually deriving a 
differential equation in A for the joint probability distribution function of the eigen- 
values. More precisely, we proceed as follows. Note first that 

(2.4) H ( A + + ” A ) =  H ( ” +  v(+”AI 

where V‘4A) has the same properties as described above for the U?) if they are evaluated 
with respect to the basis of the eigenvectors of H‘”’. This follows from the fact that 
these properties are, in fact, invariant under an arbitrary orthogonal (or unitary or 
symplectic respectively) transformation. Note that this requires that the perturbing 
ensemble be invariant under those transformations that diagonalise the unperturbed 
ensemble. Thus, our approach is not applicable, say, to the case of a C U E  perturbed 
by a GOE. 

Under these circumstances, one can write down an equation for the eigenvalues x,( A )  
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Since the perturbation is random Gaussian, the above equation is seen to be quite 
similar to a Langevin equation, so that we can follow the familiar steps that lead to a 
Fokker-Planck equation for the probability distribution of the eigenvalues. Denoting 
the joint probability distribution function for the x i ( A )  by P h ( x i ) ,  one finds 

- -d iv j  aP 
a h  
_-  

where 

P. ( j ) ,  = -- -+ x’- C a p  1 
2 ax, J = l  x , - x J  (2.7) 

The derivation of this equation is straightforward and follows standard methods. For 
completeness’ sake, however, it is presented in the appendix. Note that we have 
dropped the subscript A, as we shall continue to do in the following. 

The physical interpretation of these equations is now straightforward: the joint 
probability distribution function of the eigenvalues satisfies a continuity equation, 
where the particle current j consists of two parts: the first one is an ordinary diffusive 
current, with a diffusion constant C / 2 ,  and the second part is a drift contribution 
where the velocity of the motion is determined by the sum Xj:, ( x ,  - x j ) - ’ .  The motion 
of the eigenvalues can therefore be described as random motion of particles interacting 
with a force F given by the following expression: 

where we have assumed that the particles (eigenvalues) are moving in a very viscous 
medium, so that inertial effects may be neglected and the velocity is indeed proportional 
to the force. This is obviously very similar to the Brownian motion model introduced 
by Dyson (see, e.g., [5] for greater details). In fact, the only difference is the absence, 
in our model, of a harmonic restoring force; this may be traced directly back to an 
issue of normalisation which is of no particular interest to us. The use to which we 
shall put it, however, is slightly different; we shall evaluate the short-time response of 
a system starting very far from equilibrium. The simplifying factor in this case is the 
fact that we know the initial conditions and can assume that they will not be violently 
modified in the first few instants. In the following, we derive exact equations for the 
correlation functions (in essence, the B B G K Y  hierarchy for this system) as well as a 
generally workable approximation for short-time behaviour, which we later shall apply 
to an ensemble of matrices with randomly distributed eigenvalues (Poisson ensemble) 
perturbed by a GOE. 

3. The correlation functions 

The correlation functions for the eigenvalues are defined as follows: 

(3.1) 

The usefulness of knowing the correlation functions rather than the full distribution 
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arises from the fact that frequently the quantities of interest do not involve more than 
a few particles at a time. In fact, the statistics most commonly used in characterising 
matrix ensembles can (with one exception) all be obtained from the knowledge of the 
correlation functions with n s 4. The exception is the nearest-neighbour spacing 
distribution, which requires a knowledge of all correlation functions. This must, 
therefore, usually be considered separately. 

To derive an equation for the correlation functions, it is sufficient to integrate the 
equation for P ( x i  , . . . , x N )  over the appropriate variables. Splitting all the occurring 
sums in two parts (one running over the external variables and another over the 
integrated ones), one readily obtains 

where the integral term is to be understood as a principal value, reflecting the fact that 
the corresponding sums were always taken excluding the singular term. Thus we see 
that the equation for the n-particle correlation function requires the knowledge of the 
( n  + 1)-particle correlation function. The physical reason for this is the following: the 
presence of the particles at the fixed coordinate x i , .  . . , x,  implies that these particles 
will interact with each other by the direct effect of the interaction potential as well as 
indirectly, through the effect of all other particles rearranging in response to the 
presence of the n particles. This last effect is the one described by the integral term 
in (3.2), and for its description the knowledge of higher-order correlations is clearly 
needed. Thus one needs some way of closing the equations. This is usually done by 
an ansatz typically involving factorisation assumptions on higher-order correlation 
functions, expressing them in terms of lower-order ones. Unfortunately, the exact 
range of validity of such approximations cannot be determined a priori. 

In our case, however, we are only interested in the small-time behaviour of the 
system (i.e. we want the behaviour for small strength of the perturbation parameter 
A ) .  It is therefore possible to make a systematic perturbation expansion in A. In the 
entire paper, we shall limit ourselves to first order, but it should be borne in mind 
that, using a larger number of correlation functions, it is quite possible to carry the 
expansion further. Let us determine the two-particle correlation function p 2 ( x i ,  x2) to 
first order. The simplest approximation would be, naturally, to insert the known 
correlation functions p y ) ( x i ,  x 2 )  and p : o ) ( x l ,  x 2 ,  x 3 )  in the right-hand side of (3.2). 
This approximation may, however, be inadequate under certain circumstances. The 
reason is that the interaction potential W is singular at small interparticle distances. 
The consequence is that, even in a very short time, eigenvalues originally very close 
to one another may be very strongly affected. Under such circumstances, however, it 
appears reasonable to assume that the crucial influence is the one of the direct 
interaction between the two particles, as opposed to the interaction between the two 
particles and the cloud of correlated particles surrounding them. One therefore obtains 
a good description of the situation by approximating the integral term by its (supposedly 
known) unperturbed value while keeping the direct interactions exactly. This yields 
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the following short-time approximation to (3.2): 

(3 .3)  

Let us now consider only the functions pl(x,)  and of pz(x l ,  x2). In principle, we could 
separate density-dependent terms and use other types of n-point functions that display 
translational invariance upon a variable density background [2], but for compactness 
we shall restrict our considerations to an energy interval sufficiently narrow that density 
variations within it may be ignored. We shall use relative coordinates such as x = x2 - x1 
and y = xj - xI  . The function p1 is then independent of position, p2 depends exclusively 
on x and p3 on x and y. For the density we therefore find 

= O  (3.4) 
since pz(x)  is an even function of x and the integral is taken as a principal value. 
Thus, the local level density remains unaffected by the perturbation. (This remark 
does not hold, of course, for the variations of the density which may occur within a 
number of spacings proportional to N . )  

Similarly, we find for the two-point function 

- (x ;A)=C?-2-  a P2 d2P2 a ( - p2(x)) + G(x)  
a h  ax ax x 

G(x)=-? ({  dy P:O’(X, Y 1 
ax Y X - Y  

(3.5) 

This is a linear equation which is readily solved as follows. Define the functions &(x) 
as follows: they are the normalised solutions to the eigenvalue problem 

which has an unnormalised solution for every real k. The operator is self-adjoint with 
respect to the scalar product 

(3 .7)  

so that the system 4 k ( ~ )  is a complete orthonormal system under this product. 
Therefore every function can be expressed as a linear combination of 4k.  We define 
a(k, A )  and b(k) as follows: 
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The solution of the original system is now 
a ( k ,  0) and b ( k ) .  The equation for a ( k ,  A )  

d - a( k, A )  = - k 2 a ( k )  + b ( k )  
dA 

reduced to finding a ( k ,  A )  knowing both 
is 

(3.9) 

with the solution 

a(  k, A )  = (a(k,  0) - b( k ) / k 2 )  exp(-k2A) + b( k) /  k 2 .  (3.10) 

This solves the problem completely by quadratures, since the &(x)  are known in terms 
of elementary functions. The equations defining a( k, 0) and b ( k )  can be inverted using 
the assumed orthonormality of the c$~(x) .  Before we proceed to the more special 
applications, however, let us look at certain quite general consequences of these 
formulae. 

The functions &(x)  are explicitly given by the following general formula: 

(3.11) 

We can express the general form of the solution in terms of these Bessel functions and 
of the amplitudes a(k,  0) and b ( k )  

p 2 ( x )  = 1 4 k ,  A M k ( x )  dk 

= C-“c’’4 k - ’ l c [ ( a ( k ,  0 ) - b ( k ) / k 2 )  exp(-k*A)+b(k)/k’] 

x @ ( k x / a )  dk. (3.12) 

For small x, the following can be seen quite generally by expanding the Bessel functions 
in (3.1 1): for C S 2 the function @(x) goes as x2’= as x + 0. From this and the above 
equation follows immediately 

p 2 ( x )  -constant x x2/” (3.13) 

where the constant is in general non-zero. From this it follows that, in the most general 
case, an ensemble perturbed by a GOE, G U E  or GSE shows at small distances the type 
of eigenvalue repulsion exhibited by the perturbing ensemble. This is hardly surprising 
if the original ensemble had no (or less strong) eigenvalue repulsion. It is more 
surprising in the opposite case, where the original ensemble has a stronger repulsion 
between levels than the perturbing one. I n  this case, one has from the definition of 
a(  k,  0) that 

(3.14) 

so that the initial p : ” ( x )  has this type of level repulsion. In general, however, (3.14) 
does not appear to remain true for non-zero A and the constant defined above is 
generally non-zero. This has the remarkable consequence that an ensemble with, say, 
p y ) ( x ) - x 2  as x+O, once perturbed by a GOE, has more eigenvalues close to each 
other, i.e. p 2 ( x )  -constant x x where the constant is quite small in A, however. This 
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is presumably due to the presence in the perturbing matrix, of a finite concentration 
of elements of size comparable to the spacing of the eigenvalues in the unperturbed 
system. These will be able to shift the eigenvalues by amounts comparable to their 
separation, thereby overcoming the effect of the original strong repulsion, replacing it 
instead by a weaker repulsion with a very small prefactor. As these matrix elements 
are only present with an exponentially small probability, the effect is not likely to be 
observable in practice, however. Note, though, that the perturbed ensemble must be 
diagonalisable by the symmetry operations of the perturbing ensemble; thus, for 
example, the case of a C U E  perturbed by a GOE cannot be handled by our methods 
and the above remarks do not apply. On the other hand, they are expected to apply 
to the case of a picket fence perturbed by a GOE, if appropriately taken as a limiting case. 

4. The Porter-Rosenzweig model 

We now turn our attention to the Porter-Rosenzweig model, i.e. the case of the Poisson 
ensemble perturbed by a small GOE. The Poisson ensemble is defined as an ensemble 
of matrices with no correlation between the eigenvalues. One therefore has 

P n ( X , ,  . ' 9 x,) = P" (4.1 ) 

where p is simply the eigenvalue density, which we take to be a constant. Note that 
we do not have any delta functions, because the correlation functions, as we have 
defined them in the previous section, refer to the probability of finding n diferent 
eigenvalues in the positions x ,  , . . . , x,. From this it follows that the three-body term 
in (3 .3)  is zero, and therefore so are the coefficients b ( k )  occurring in (3.10). This is 
because p 3  5 dy/y = 0 if the integral is taken to be a principal value, as we have assumed 
throughout. 

The only remaining task is therefore to compute the a ( k ,  0). This leads to integrals 
which can be evaluated straightforwardly to give the following expressions for p z ( x ;  A ) ,  
where, for convenience, we have set p equal to 1 :  

exp( - k2A ).I,( g) d k 

p 2 ( x ;  A )  = x sin kx exp( - k 2 A )  dk { I: 
c=2 

C = l  (4.2) 

thereby recovering the results of [8]. Note that these functions can all be cast into the 
dimensionless form 

which means that the only relevant energy scale in the form of the correlation functions 
of the Porter-Rosenzweig model is the typical size of the matrix elements of the 
perturbation. Since there were no correlations to start with, this is perhaps not very 
surprising. The functions are shown in figure 1. The short-range behaviour is, as 
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* O  _I 
1 5  i 

Figure 1. Plot of the two-point correlation function of a Poisson ensemble perturbed by 
a COE (full curve), a C U E  (broken curve) and a CSE (dotted curve) as a function of the 
dimensionless distance between eigenvalues x/&. 

expected, very different for the three models, but the long-range behaviour appears 
very similar. This is easily confirmed by an explicit computation which yields 

L A  

X 
p2(x; A )  = 1 +,+o(~-~). (4.4) 

The form of the function can also be understood on physical grounds: the repulsion 
between the particles is responsible for the depletion of the particles close to the origin. 
However, since the original spectrum did contain eigenvalues quite close to the origin 
and since the ‘time’ to  move was quite short, the particles accumulated at a distance 
of order f i , which corresponds to the distance a diffusing particle covers in a time A. 

As a final remark, the following point should be noted: it is, of course, possible to 
compute such characteristics as the number variance Z2( L) (see, e.g., [2] for a definition) 
from the two-point correlation function. In this case, it can be shown that 

From the equations we have derived, it is found that this last integral is always 
independent of A for the reason that the equation determining p 2 ( x ;  A )  is of the form 

This holds for the original equation (which is an exact relation) as well as for all its 
later approximations. Therefore, it follows that the asymptotic behaviour of the number 
variance as defined above can never be affected by a small perturbation. Thus the 
effects of small perturbations are strictly limited to correspondingly small energy 
intervals. This result is in agreement with numerical results of Roman [lo]. 
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5. Conclusions 

We have mapped the problem of an aribtrary known ensemble of Hamiltonians 
perturbed by a GOE (or CUE or GSE) onto a dynamical problem of interacting particles, 
which we were able to solve for small times, i.e. small perturbations. By using the 
BBGKY hierarchy and solving self-consistently for the two-point function, we were able 
to obtain a result valid for all distances, as opposed to standard perturbation theory, 
which only recovers the long-distance behaviour correctly. 

The solution is given in integral form, and its short-distance behaviour can be given 
generically. It depends on the perturbation only, and is linear for the GOE, quadratic 
for the CUE and quartic for the GSE. This behaviour translates directly into a correspond- 
ing property of the nearest-neighbour distribution. This is due to the fact that two 
eigenvalues that are very close one to the other are overwhelmingly likely to be nearest 
neighbours, so that the short-distance behaviour of the nearest-neighbour distribution 
is the same as that of the two-point function. This short-range behaviour for the 
nearest-neighbour distribution function is not unexpected, yet functional forms with 
other types of short-range behaviour have been occasionally used in the literature. 
Furthermore, using the general result, special cases of interest may be treated; by way 
of example, we give the result for a Poisson distribution perturbed by a GOE, G U E  or 
GSE. This exactly confirms the result previously obtained by other means by Tomsovic 
[8] and French er a1 [9]. 

Obviously, the general integral solution can be applied to many other models. 
Thus, following an idea by Berry and Robnik [ l l ] ,  the properties of partially chaotic 
systems would be determined by a direct sum of GOE and a Poisson ensemble. The 
short-range behaviour of this model is not satisfactory [ 121 and we propose to improve 
it by introducing a GOE perturbation of the type discussed in this paper and compare 
the integrals (3 .13 )  with numerical experiments. Similarly we can discuss weakly 
coupled spectra (due to slight symmetry breaking) such as may occur in nuclear or 
molecular physics. Direct sums of GOE of different relevant sizes will be needed, and 
again the solution is readily available in terms of our general results. 

Appendix 

To simplify the notation, we shall henceforth denote x , ( A )  by x, and x,(A + A A )  by y , ,  
dropping the A dependence. 
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We now wish to change (A2) so that it becomes a relation between PA+,, and P A ,  
both evaluated at the points y , ,  . . . , y , .  For this purpose, we need to evaluate the 
Jacobian as a function of the y ,  as well as the function P A ( x I , .  . . , x N ) .  

To this end we need the expression of second-order perturbation theory, i.e. equation 
(2.5), in order to obtain the y ,  as a function of the x , ,  which in first order can be 
inverted as follows 

We first evaluate the Jacobian of this transformation for an arbitrary perturbation 
V'AA), not averaging until the end. Roughly speaking, then, u f A )  is of the order of 
(AA)' '2 ,  so that the above Jacobian must be evaluated to second order in the perturba- 
tion. This gives 

+ O( ( A A ) ~ ) .  
N ,  a I u ? ' ) ~ *  = 1 - C  -- 

! , / = I  dYl Yl - Y ,  

We now need to develop PA ( x , ,  . . . , x , )  in a Taylor series to second order in the U:). 
This yields 

again up to terms of higher order in AA. 
We now average (A5) and (A6) over the possible values of the U!,?', obtaining thereby 

N ,  a 1 
J(X1, . . . ,  X N ) = l - A A  -- 

ay, Y ,  - Y ,  

and for P A ( x l , .  . . , x N ) :  

the equations (A2), (A7) and (A8) are then readily combined to yield the result 
mentioned in the text. Note, however, that while the original problem was invariant 
under a change from A to -A,  the final Fokker-Planck equation clearly is only valid 
for positive A. This comes from the fact that we have systematically expressed everything 
in terms of the y , .  Had we done the opposite and expressed everything in terms of 
the x i ,  we would have obtained the time-reversed equation. 
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